Artigo
· Nov. 28, 2023 8min de leitura

Criar, prever e explorar modelos de ML usando InterSystems Cloud SQL / IntegratedML

Olá, Comunidade,
Neste artigo, vou apresentar meu aplicativo iris-mlm-explainer

Esse aplicativo da Web se conecta ao InterSystems Cloud SQL para criar, treinar, validar e prever modelos de ML, fazer previsões e mostrar um painel com todos os modelos treinados e uma explicação sobre o funcionamento de um modelo de machine learning ajustado. O painel fornece plotagens interativas de desempenho do modelo, importância do recurso, contribuições do recurso para previsões individuais, plotagens de dependência parcial, valores SHAP (interação), visualização de árvores de decisões individuais etc.

 

Pré-requisitos

  • Você precisa ter uma conta no InterSystems Cloud SQL.
  • Você precisa ter o <a book="" en="" getting-started-installing-git="" git-scm.com="" https:="" v2="">Git</a> instalado localmente.
  • Você precisa ter o <a downloads="" https:="" www.python.org="">Python3</a> instalado localmente.  

Primeiros Passos

Vamos seguir as etapas abaixo para criar e visualizar o painel explicativo de um modelo:

  • Etapa 1 : fazer o git pull/clone do repositório
  • Etapa 2 : fazer login no portal de serviços do InterSystems Cloud SQL
  • Etapa 2.1 : adicionar e gerenciar arquivos
  • Etapa 2.2 : importar DDL e arquivos de dados
  • Etapa 2.3 : criar modelo
  • Etapa 2.4 : treinar modelo
  • Etapa 2.5 : validar modelo
  • Etapa 3 : ativar o ambiente virtual do Python
  • Etapa 4 : executar o aplicativo da Web para previsão
  • Etapa 5 : explorar e o painel explicativo

Etapa 1 : fazer o git pull/clone do repositório

Então, vamos começar com a primeira etapa

Crie uma pasta e faça o git pull/clone do repositório em qualquer diretório local

git clone https://github.com/mwaseem75/iris-mlm-explainer.git

 

Etapa 2 : fazer login no portal de serviços do InterSystems Cloud SQL

Faça login no InterSystems Cloud Service Portal
image

 

 

Selecione a implantação executada

image

 

Etapa 2.1 : adicionar e gerenciar arquivos

Clique em "Add and Manage Files" (Adicionar e gerenciar arquivos)

image

O repositório contém os arquivos USA_Housing_tables_DDL.sql(DDL para criar tabelas), USA_Housing_train.csv(dados de treinamento) e USA_Housing_validate.csv(para validação) na pasta de conjuntos de dados. Selecione o botão de upload para adicionar esses arquivos.

Adicionar arquivos

 

Etapa 2.2 : importar DDL e arquivos de dados

Clique em "Import files" (Importar arquivos), no botão de opção das declarações DDL ou DML e no botão "Next" (Próximo)

Importar DDL

Clique no botão de opção do Intersystems IRIS e em "Next"

IsIRIS

Selecione o arquivo USA_Housing_tables_DDL.sql e pressione o botão para importar arquivos

Importar arquivo DDL

Clique em "Import" na caixa de diálogo de confirmação para criar a tabela

confirmar importação

importação concluída

 

Clique nas ferramentas da Query em SQL para verificar se as tabelas foram criadas

conferir se as tabelas foram criadas

Importar arquivos de dados

Clique em "Import files" (Importar arquivos), no botão de opção dos dados CSV e no botão "Next" (Próximo)

csv1

Selecione o arquivo USA_Housing_train.csv e clique no botão "Next"

csv2

 

Selecione o arquivo USA_Housing_train.csv na lista suspensa, marque para importar o arquivo como linha de cabeçalho, selecione "Field names in header row match column names in selected table" (Os nomes dos campos na linha de cabeçalho correspondem aos nomes das colunas na tabela selecionada) e clique em "Import files"

csv3

Clique em "Import" na caixa de diálogo de confirmação

csv4

Confira se 4000 linhas foram atualizadas

csv5

Repita as mesmas etapas para importar o arquivo USA_Housing_validate.csv, que contém 1500 registros

csv6

Etapa 2.3 : criar modelo

Clique em "IntegratedML tools" (ferramentas do IntegratedML) e selecione "Create Panel" (Criar painel).

Insira "USAHousingPriceModel" no campo de nome do modelo, selecione a tabela "usa_housing_train" e "Price" no menu suspenso "Field to predict" (Campo para prever). Clique no botão "Create model" para criar o modelo

criar modelo

 

Etapa 2.4 : treinar modelo

Selecione "Train Panel" (Treinar painel), escolha "USAHousingPriceModel" na lista suspensa "Model to train" (Modelo a treinar) e insira "USAHousingPriceModel_t1" no campo de nome do modelo a treinar

TREINAR1

O modelo será treinado após a conclusão do status de execução

TREINAR2

 

Etapa 2.5 : validar modelo

Selecione "Validate Panel" (Validar painel), escolha "USAHousingPriceModel_t1" na lista suspensa "Trained model to validate" (Modelo treinado a validar), selecione "usa_houseing_validate" na lista suspensa "Table to validate model from" (Tabela para validar o modelo) e clique no botão "Validate model" (Validar modelo)

image

 

Clique em "Show validation metrics" para ver as métricas

mostrar validação

 

Clique no ícone de gráfico para ver o gráfico "Prediction VS Actual" (Previsão x Real)

gráfico de validação

 

Etapa 3 : ativar o ambiente virtual do Python

O repositório já contém uma pasta de ambiente virtual do python (venv) com as bibliotecas necessárias.

Tudo o que precisamos fazer é ativar o ambiente
No Unix ou MacOS:

$ source venv/bin/activate

No Windows:

venv\scripts\activate

Etapa 4 : definir parâmetros de conexão do InterSystems Cloud SQL

O repositório contém o arquivo config.py. Basta abrir e definir os parâmetros
image
Coloque os mesmos valores usados no InterSystems Cloud SQL
image

 

Etapa 4 : executar o aplicativo da Web para previsão

Execute o comando abaixo no ambiente virtual para iniciar nosso aplicativo principal

python app.py

image

Acesse http://127.0.0.1:5000/ para executar o aplicativo

image

Insira "Age of house" (Idade da casa), "No of rooms" (Nº de cômodos), "No of bedroom" (Nº de quartos) e "Area population" (População da área) para obter a previsão

image

Etapa 5 : explorar e o painel explicativo

Por fim, execute o comando abaixo no ambiente virtual para iniciar nosso aplicativo principal

python expdash.py

imageimage
image

Acesse http://localhost:8050/ para executar o aplicativo
image

O aplicativo listará todos os modelos treinados com nosso "USAHousingPriceModel". Clique no hyperlink "Go to dashboard" (Acessar painel) para visualizar a explicação sobre o modelo

Importância dos recursos. Quais recursos tiveram o maior impacto?
image

 

Métricas quantitativas para o desempenho do modelo, Qual é a diferença entre o valor previsto e o observado?
image

 

Previsão e Como cada recurso contribuiu para a previsão?
image

 

Ajuste os valores dos recursos para mudar a previsão
image

Resumo Shap, Ordenamento dos recursos por valores shap
image

 

Resumo de interações, Ordenamento dos recursos por valor de interação shap
image

 

Árvores de decisões, Exibição de árvores de decisões individuais dentro do Random Forest
image

 

Obrigado

Discussão (0)1
Entre ou crie uma conta para continuar